Twisted Physics: 7 Mind-Blowing Findings

From bizarre antimatter to experiments that tie light up in knots, physics has revealed some spooky sides of our world. Here are seven of the most mind-blowing recent discoveries.

Quark-gluon soup

space science science physics science space space earth science space science science physics science space space

Another amazing feat of physics came out of Brookhaven’s Relativistic Heavy Ion Collider this year. In February 2010 scientists announced they’d created a “quark-gluon soup” where protons and neutrons had broken up into their constituent building blocks – quarks and gluons.

It took extremely powerful collisions of gold atoms in the accelerator to achieve the temperatures necessary – about 7 trillion degrees Fahrenheit (4 trillion degrees Celsius). These conditions are 250,000 times hotter than the center of the sun and similar to temperatures seen just after the birth of the universe. They were the hottest temperatures ever reached on Earth.

Amazing particle triplets

space science science physics science space space earth science space science science physics science space space

Using lithium atoms, scientists recreated an ancient mathematical symbol that had been seen as far back as the second century in Afghan Buddhist art. The symbol, called the Borromean rings, depicts three rings linked together. If any ring were removed, they would all come apart.

Physicists predicted that particles should be able to form this same arrangement, but no one had been able to achieve it until now. The final realization, announced in December 2009, came 40 years after the prediction.

Light bends matter

space science science physics science space space earth science space science science physics science space space

While it’s easy to see matter bending light – just look through a prism – it’s rare to find light bending matter. But scientists saw just that in an experiment reported in March 2010. Researchers assembled flat ribbons of nanoparticles – tiny bits of matter only billionths of a meter long – in a darkened laboratory.

Then when the ribbons were exposed to light, they curled up into spirals. The results could help engineers design new types of optics and electronics.

Prev1 of 3Next

Leave a Reply

Your email address will not be published. Required fields are marked *